Infinito


Infinito (do latim infinítu) é um adjetivo que denota algo que não tem início nem fim, ou não tem limites, ou que é inumerável. É também um nome que representa o que não tem limites. Usado em sentido figurado pode significar Deus, o Absoluto ou o Eterno.
É um conceito usado em vários campos, como a matemática, filosofia e a teologia. É representado com o símbolo ∞, e na matemática é uma noção quase-numérica usada em proposições. Distingue-se entre infinito potencial e infinito atual.
O infinito pode ser visto de muitas perspetivas. A intuição percebe-o como uma espécie de "número" maior do que qualquer outro. Para algumas tribos primitivas é algo maior que três, representando "muitos", algo incontável. Para um fotógrafo o infinito começa a dez metros da lente, ao passo que para um cosmólogo pode não ser suficiente para conter o universo. Para um filósofo é algo que tem a ver com a eternidade e a divindade. Mas é na matemática que o conceito tem as suas raízes mais profundas, sendo a disciplina que mais contributos deu para a sua compreensão.

Formas de Infinito

Infinito potencial

infinito potencial é a forma mais natural e intuitiva de conceber o infinito, sendo por isso de aceitação geral e não controversa. Nesta concepção o infinito corresponde a algo que pode ser aumentado, continuado ou estendido, tanto quanto se queira.
Um exemplo é a sequência dos números naturais: é sempre possível somar mais um, estendendo-a indefinidamente:
\,{1; 2; 3; 4; 5; 6; 7; ...}
Para Platão (428? – 347? a.C.) o potencial de extensão era considerado limitado, finito; podia ser adjetivado de peiron (limitado, claramente determinado). O conceito de infinito propriamente dito era algo irracional, impensável, sem sentido. Inclusive pareceu natural pensar que não faria sentido que Deus tivesse tão indesejada caraterística.
Aristóteles ( 384 – 322 a.C.), discípulo de Platão, cuja doutrina marcou muitos pensadores da história, como Tomás de Aquino, também recusou a existência do infinito como algo real ou pensável. Em boa parte isso deveu-se aos paradoxos que o conceito de infinito encerra, como mostrou Zenão, que levavam a concluir o infinito como um conceito negativo, irracional e não pensável.
Apesar disso, Aristóteles aceitou a noção de infinito absoluto, apeiron (ilimitado, ininteligível, caótico). O método dedutivo, essencial à geometria aristotélica, determina que "não podemos conhecer os objetos posteriores que não derivem de elementos primeiros". Mas estes postulados primeiros são indemonstráveis, estão fora da ciência, estando no domínio da metamatemática. São o motor imóvel - absoluto - de tudo o resto: Deus. Portanto, o infinito será algo para além da razão, mas que pode ser pensado como sendo transcendental ou no domínio do divino.
A infinidade potencial é caraterística da forma intuitiva de conceber o espaço e o tempo, mas não é evidente ou unânime se o infinito potencial será um atributo efetivo do espaço e tempo reais. Ao longo da história vários pensadores tentaram explorar e levar mais longe o conceito de infinito. Por necessidade da matemática, surgiu muito mais tarde a concepção de infinito em ato, que só foi apresentado de forma convincente no século XIX pela mão de Georg Cantor.

Infinito absoluto

infinito absoluto, a par do infinito potencial, foi a única outra forma de infinito tomada em linha de conta pelos pensadores durante milênios.
Aristóteles considera o infinito potencial, mas afirma não fazer sentido pensar a sua concretização como um todo completo, um infinito em ato. Impõe-se portanto um limite do processo de atuação, um "fim último", uma entelequia, usando o termo que os gregos introduziram na linguagem da filosofia.
Este conceito de infinito como absoluto entrou na doutrina filosófica cristã. No século XIII esta contém muitos elementos da Suma Teológica de Tomás de Aquino, o qual, por sua vez, absorvera a estrutura filosófica de Aristóteles. A concepção do infinito aristotélico-tomista manteve-se dominante desde a civilização greco-latina até ao Renascimento.
No século XIX, Georg Cantor desafiou a visão do infinito como algo que não podia ser tratado racionalmente e desenvolveu a sua teoria dos transfinitos. Esta teoria, apesar de ter permitido aumentar a compreensão do infinito, tinha os seus próprios limites, pelo que Cantor foi levado a concluir a existência de um infinito Absoluto, que consegue estar para além de toda a criação racional.

Infinito atual

infinito atualinfinito real ou ainda infinito completo, é um conceito mais abstrato e controverso: faz sentido a existência por completo de uma entidade com um número infinito de elementos?
O aristotelismo nega a existência do infinito atual, que ele seja físico ou abstrato, tendo sido esta a posição dominante durante milénios. Pontualmente surgiram algumas vozes dissonantes, que admitiam pensar o infinito para lá do potencial como atual: Deus poderia ter uma natureza infinita atual, e não apenas um processo com potencial. São exemplos disso Gregório de Nissa, Nicolau de Cusa e, muito mais tarde, Georg Cantor. Em bom rigor, os pioneiros do conceito de infinito atual ainda o associavam ao apeiron - algo logicamente incoerente. Foi Cantor o primeiro a mostrar que o conceito poderia ser trabalhado de forma lógica e racional .
Na matemática, notou-se que existe uma grande diferença qualitativa entre uma sucessão potencial infinita de elementos, discretos, e a sucessão de pontos de um segmento de reta, aquilo que é chamado de linha contínua. No primeiro caso podemos acrescentar sempre mais um elemento, dando mais um passo para o elemento seguinte. Uma sucessão é infinitamente extensível. No caso do contínuo não faz sentido falar do elemento seguinte: entre um determinado ponto e outro posterior, tão próximo quanto se queira, é sempre possível encontrar um ponto intermédio, e assim consecutivamente, até ao infinito. Um segmento contínuo é infinitamente divisível.
Este segundo tipo de infinito levanta grandes questões sobre o infinito potencial, pois parte-se de um todo dado (o segmento de reta) que pode conter um si uma infinidade de elementos. O infinito em ato parece ser um propriedade necessária do contínuo.
Estas propriedade do segmento de reta foram explicadas através do conceito de infinitésimo: "números" indefinidamente pequenos, menores do que qualquer número real. Este conceito tem raízes na grécia antiga, no atomismo de Leucipo de Mileto (século V a.C.) e seu discípulo Demócrito de Abdera (460 - 370 a.C.). O atomismo foi criticado ao longo da história, tendo sido Zenão de Eleia (495 - 430 a.C.) o protagonista de um dos mais marcantes ataques, através dos seus paradoxos. Foi recuperado mais tarde, para servir de fundamento ao cálculo infinitesimal de Leibniz (1646 - 1716) e Newton (1643 - 1727). Apesar da sua eficácia na matemática e na física, os infinitésimos apresentavam inconsistências, presentes no facto de serem simultaneamente não-finitos e não-nulos.
Os infinitésimos acabaram por ser banidos da matemática com a formulação do cálculo diferencial e integral por Karl Weierstrass (1815-1897), que substitui o infinitésimo pelo conceito de limite. Os infinitésimos foram mais tarde recuperados na matemática por Abraham Robinson (1918-1974), que em 1966 apresenta uma nova teoria para a análise matemática baseada nos infinitésimos, chamada de análise não-standard, que fornece um fundamento teórico para a utilização dos infinitésimos tal como Leibniz idealizou.
Georg Cantor (1845 - 1918) foi considerado como sendo o primeiro a dar um tratamento lógico e racional ao infinito atual. Criou o conceito de número transfinito, que denota a "potência" da cardinalidade de um conjunto. O primeiro transfinito, \alef_0 (aleph-zero) representa a "quantidade" dos números naturais, sendo por isso um infinito em ato. Cantor mostrou que existem infinitos com diferentes potências, sendo a cardinalidade do conjunto dos números reais superior à dos números naturais e racionais.

Na Matemática

Em matemática, conjuntos infinitos foram primeiramente considerados por Georg Cantor, por volta de 1873. Cantor observou que conjuntos infinitos podem ter tamanhos diferentes, distinguindo entre conjuntos infinitos contáveis e incontáveis, e desenvolveu sua teoria de números cardinais baseado nesta observação. A matemática moderna aceita o infinito real. Por exemplo, as linhas e superfícies da geometria são interpretados pela matemática contemporânea como conjuntos infinitos de pontos. Certos sistemas numéricos estendidos, tais como os números surreais, incorporam os números (finitos) ordinais e os números infinitos de diferentes tamanhos.
É necessário abandonar a intuição sobre objetos finitos ao lidar com conjuntos infinitos. Isso é provado pelo paradoxo do Grand Hotel de Hilbert.

O símbolo de infinito
John Wallis introduziu o símbolo de infinito na literatura matemática.
O símbolo de infinito \infty  é por vezes chamado de lemniscata, do latim lemniscus. John Wallis é creditado pela introdução do símbolo em 1655 no seu De sectionibus conicis. Uma conjectura sobre o porquê ter escolhido este símbolo é ele derivadar de um numeral romano para 1000 que, por sua vez foi derivado do numeral etrusco para 1000, que se assemelhava a CIƆ e era por vezes usado para significar "muitos". Outra conjectura é que ele deriva da letra grega ω - Omega - a última letra do alfabeto grego. Também, antes de máquinas de composição serem inventadas, ∞ era facilmente impresso em tipografia usando o algarismo 8 deitado sobre o seu lado.
O símbolo de infinito está disponível no padrão HTML como ∞ e em LaTeX como \infty. Em Unicode, é o caractere de código U+221E (∞), ou 8734 em notação decimal.
A curva matemática que gera o símbolo \,\!\infty  é a lemniscata.
Na teoria dos conjuntos, o infinito é representado pela letra hebraica aleph (  \aleph  ).

Definição matemática formal

O infinito tornou-se uma ferramenta fundamental para o cálculo infinitesimal e diferencial, que apesar dos seus bons resultados práticos, não estava ainda formalmente definido de forma satisfatória para os padrões de rigor matemáticos. E sem uma definição formal sólida não era possível resolver de forma convincente os paradoxos que ainda persistiam.
Dirichlet (1805 - 1859) apresentou o princípio da gaveta, conhecido desta forma apesar de nunca ter sido publicado por este, também referido como princípio da casa dos pombos. Afirma que se tivermos mais do que n objetos arrumados em n gavetas, então há pelo menos uma gaveta com mais de um item. De forma mais abstrata, podemos dizer: Se M é um conjunto finito, é impossível estabelecer uma correspondência de um para um de elementos de M com outros elementos de M de forma a que fiquemos com algum elemento que não tenha correspondente.

Richard Dedekind (1831 - 1916), em 1888, propôs na sua obra O que são e o que precisam ser os números uma definição de infinito, hoje conhecida como infinito de Dedekind, partindo de propriedades bem conhecidas dos conjuntos finitos, equivalente à também proposta em 1887 por Giuseppe Peano: um conjunto é infinito se existe uma função de um para um (bijeção) entre todo o conjunto e um subconjunto próprio.
Usando uma linguagem matemática, podemos dizer: Sendo M um conjunto finito, é impossível encontrar uma função de um para um com um subconjunto próprio de M. Dedekind definiu como conjunto infinito todo aquele que tem uma bijeção com um conjunto próprio, e por oposição, como conjunto finito todo aquele que não é infinito.






0 comentários: sobre Infinito

Postar um comentário para Infinito

© 2011 Downloads | Todos os direitos reservados - Designed by BTN